PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

III B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023

 DIGITAL COMMUNICATIONS(ECE BRANCH)
Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A $(5 \mathrm{X} 2=10 \mathrm{M})$.

Q.No.		Questions	Marks	CO	KL
1.	a)	Draw the basic block diagram of digital communication system.	$[2 \mathrm{M}]$	1	2
	b)	Write the equations for coherent BPSK signals.	$[2 \mathrm{M}]$	2	2
	c)	Differentiate coherent and non-coherent detection.	$[2 \mathrm{M}]$	3	2
	d)	Define entropy and list out its properties.	$[2 \mathrm{M}]$	4	1
	e)	Define minimum distance of a linear code.	$[2 \mathrm{M}]$	5	1

PART-B
Answer One Question from each UNIT (5X10=50M)

Q. No.		Questions	Marks	CO	KL
UNIT-I					
2.	a)	Explain the operation of pulse code modulation system with neat sketch.	[5M]	1	4
	b)	Discuss the sampling and quantization processes.	[5M]	1	3
OR					
3.	a)	Discuss the companding process in PCM systems.	[5M]	1	
	b)	Explain the delta modulator and demodulator with neat diagrams.	[5M]	1	2
UNIT-II					
4.	a)	Draw and explain the coherent BPSK with relevant expressions.	[5M]	2	2
	b)	Explain the modulation and detection of QPSK with neat diagram.	[5M]	2	2
OR					
5.	a)	Explain the bandwidth efficiency of M-ary Phase shift keying system.	[5M]	2	2
	b)	Discuss the transmitter and receiver of BFSK.	[5M]	2	2
UNIT-III					
6.	a)	Explain the baseband signal receiver.	[5M]	3	2
	b)	Discuss the coherent system of signal reception.	[5M]	3	4
OR					
7.	a)	Explain the integrate and dump circuit and find its probability of error.	[5M]	3	4
	b)	What is optimum filter and derive the probability of error of it.	[5M]	3	2
UNIT-IV					
8.		A memory less source emits six messages with probabilities $0.3,0.25,0.15$, $0.12,0.1$ and 0.08 . Find the Huffman code. Determine its average word length, the efficiency and the redundancy.	[10M]	4	2
OR					

9.	a)	Illustrate the concept of entropy and its properties.	[5M]	4	4
	b)	A DMS X has five equally likely symbols. Construct a Huffman code for X and calculate the efficiency of the code.	[5M]	4	4
UNIT-V					
10.		For $\mathrm{k}=3$ and rate $1 / 3$ code generated by: $g_{1}(x)=1+x^{2}, g_{2}(x)=1+x \wedge g_{1}(x)=1+x+x^{2}$, draw the state diagram, tree diagram and trellis diagram.	[10M]	5	3
OR					
11.		Consider $(7,4)$ linear code whose generator matrix is i) Find all code vectors of this code, ii) Find the parity check matrix for this	[10M]	5	4

